Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone.
نویسندگان
چکیده
Studies of hybridization have increased our understanding of the nature of species boundaries, the process of speciation, and the effects of hybridization on the evolution of populations and species. In the present study we use genetic and morphological data to determine the outcome and consequences of secondary contact and hybridization between the butterfly species Lycaeides idas and L. melissa in the Rocky Mountains. Admixture proportions estimated from structure and geographical cline analysis indicate L. idas and L. melissa have hybridized extensively in the Rocky Mountains and that reproductive isolation was insufficient to prevent introgression for much of the genome. Geographical patterns of admixture suggest that hybridization between L. idas and L. melissa has led to the formation of a hybrid zone. The hybrid zone is relatively wide, given estimates of dispersal for Lycaeides butterflies, and does not show strong evidence of cline concordance among characters. We believe the structure of the Lycaeides hybrid zone might be best explained by the patchy distribution of Lycaeides, local extinction and colonization of habitat patches, environmental variation and weak overall selection against hybrids. We found no evidence that hybridization in the Rocky Mountains has resulted in the formation of independent hybrid species, in contrast to the outcome of hybridization between L. idas and L. melissa in the Sierra Nevada. Finally, our results suggest that differences in male morphology between L. idas and L. melissa might contribute to isolation, or perhaps even that selection has favoured the spread of L. melissa male genitalia alleles.
منابع مشابه
Molecular and morphological divergence in the butter ̄y genus Lycaeides (Lepidoptera: Lycaenidae) in North America: evidence of recent speciation
Lycaeides idas (Linnaeus) and L. melissa (W. H. Edwards) (Lepidoptera: Lycaenidae) are broadly sympatric in several regions of North America (Fig. 1) and are morphologically distinguishable by qualitative wing pattern differences (Tilden & Smith, 1986), quantitative differences in male genital morphology (Nabokov, 1949; Lane & Weller, 1994) and by ecological differences in habitat speci®city an...
متن کاملAfter 60 years, an answer to the question: what is the Karner blue butterfly?
The Karner blue butterfly (KBB), Lycaeides melissa samuelis, is a federally protected taxon whose relationship to the Melissa blue, Lycaeides melissa, has been a point of contention during the 66 years since the KBB was first described. Using a large population-genomic dataset and a model of population divergence with migration, we investigated the relationship between the KBB and L. melissa, a...
متن کاملMORPHOLOGY, HISTOLOGY, AND FINE STRUCTURE Egg Morphology Varies Among Populations and Habitats Along a Suture Zone in the Lycaeides idas-melissa Species Complex (Lepidoptera: Lycaenidae)
Insect eggs are often characterized by an intricately sculptured external surface, which has been used to a limited extent as a taxonomic character, but not at all in comparisons among populations within a species or among populations of closely related species. We describe egg morphology by using scanning electron microscopy from 12 populations within a species complex of host-speciÞc butterßi...
متن کاملHybrid swarm between divergent lineages of mule deer (Odocoileus hemionus).
Studies of hybrid zones have revealed an array of evolutionary outcomes, yet the underlying structure is typically characterized as one of three types: a hybrid zone, a hybrid swarm or a hybrid taxon. Our primary objective was to determine which of these three structures best characterizes a zone of hybridization between two divergent lineages of mule deer (Odocoileus hemionus), mule deer and b...
متن کاملGeographically multifarious phenotypic divergence during speciation
Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 19 15 شماره
صفحات -
تاریخ انتشار 2010